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Abstract. We propose a simple yet powerful extension for event-based
progression disease model by exploiting the Network Diffusion Hypothe-
sis. Our approach allows incorporating connectivity information derived
from diffusion MRI data in the form of an informative prior on event
ordering. This simple extension using a definition of transition proba-
bility based on network path length leads to improved reproducibility
and discriminative power. We report experimental results on a subset
of the Alzheimers Disease Neuroimaging Initiative data set (ADNI 2).
Though trained solely on cross-sectional data, our model successfully
assigns higher progression scores to patients converting to more severe
stages of dementia.
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1 Introduction

Imaging biomarkers of neurodegeneration have played an increasingly important
role in clinical trials and disease stage assessment in recent years [1,2]. At the
same time, as the trial design has grown increasingly complex, the very notion
of ”biomarker” has evolved. Classical notions of biomarker efficacy, such as the
power under Normal assumptions [3,4], and classification accuracy [5] have given
way to temporally aware models of disease [6,7]. This more recent approach
to modeling disease, generally termed Disease Progression Modeling (DPM),
assigns a time-dependent disease score (or stage) to each patient as a well as
a canonical model of imaging and potentially non-imaging patient data as a
function of this score. Unlike traditional classification approaches, this approach
rests on the idea that different clinical and imaging features are discriminative
at different stages of the disease: each marker has a specific finite time window
during which it is affected by the illness. One of the earliest such models used
with neuroimaging data is the Event-Based Model (EBM) [8]. Here, the disease
score is treated as a discrete variable to be identified with a neurodegenerative
”event” in each input phenotype, such as regional gray matter or the presence
of misfolded proteins as measured with MRI or PET. The canonical event order
is estimated by sampling from a Bayesian posterior formulation, generally using
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specific parametric distribution assumptions for healthy and diseased subjects.
Variations on EBM include discriminative EBM [9], and simultaneous staging
and unsupervised subject subtype identification [10]. Models beyond EBM allow
for an explicit continuous-time reparameterization of each subject, effectively
modeling both the continuous canonical form of all phenotypes in concert as
well as individual ”neurological reserve” of each patient. The fully longitudinal
DPM’s (LDPM), first proposed in [11] as a parametric sigmoidal progression
function, were later expanded for spatially dense imaging features with additional
spatial priors [12]. The parametric progression form was further relaxed in a
Gaussian process formulation in [13].

A noteworthy aspect of the above methods is the lack of informative priors
on the order in which specific phenotypes undergo degeneration. In fact, such a
prior is readily discernible from available MRI data and has been used elsewhere.
Specifically, Raj et al. proposed the Network Diffusion Hypothesis, whereby the
neurodegenerative process develops in a highly stereotyped manner, according
to the brain’s structural connectivity [14]. One recent work on DPM has indeed
fused these two ideas [15]. However, even there only a mean ”standard” connec-
tivity is used for all subjects. Here for the first time, we propose a subject-specific
network prior to constrain DPM. We develop the idea in the context of EBM
and apply the model to the ADNI 2 dataset. Initial results indicate a better
longitudinal generalization compared to standard EBM, and better predictive
ability of the resulting progression score when applied to new subjects.

The remaining paper is structured as follows: Section 2 describes the EBM
model and introduces the connectivity prior. We explain our experimental pipeline
in Section 3. Section 4 summarizes the results of our experiments. Finally, in Sec-
tion 5 we discuss some possible enhancements of our approach and conclude.

2 Event-Based Models and the Connectivity Prior

2.1 The Event-Based Model

The idea of modeling disease progression in the form of distinct ordered events
goes back to [8]. The authors propose that disease development could be divided
into stages. Every stage is defined by an event, i.e. the moment when some
biomarker switches its state from normal to abnormal. Specifically, given a set
of M biomarkers X = {x1, . . . , xM} the EBM estimates order π (permutation of
indexes 1 . . .M) in which each biomarker becomes abnormal. The model then
takes the following form:

p(k|X,π) :=

k∏
j=1

p(xj |Eπ(j))
M∏

j=k+1

p(xj |¬Eπ(j)). (1)

This formula defines the probability p(k|X,π) of being at progression stage k
given a set of biomarkers X and an order π. Here, p(xj |Eπ(j)) and p(xj |¬Eπ(j))
are likelihoods of a measurement xj given that event Eπ(j) has or has not
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occurred. Given N subjects, the total likelihood of observing the data X =
{X1, . . . , XN} is the following:

p(X|π) =

N∏
i

M∑
k=0

p(k)p(k|Xi, π), (2)

where p(k) is the probability of being at stage k. p(k) is typically treated as an
uninformative (uniform) prior. Once (2) is maximized and an optimal π is found,
one could easily evaluate disease stage k for every patient using the expression
in (1). To find optimal π, one needs to maximize the posterior distribution, i.e.
find the optimal order π given X:

p(π|X) ∝ p(π)p(X|π), (3)

here p(π) denotes the prior probability of specific order, which is also typically
set to be uniform.

In the present paper, we suggest to use connectivity information obtained
from diffusion MRI, to get an informative, non-uniform p(π). This allows us
to use personal information more directly since both p(x|E) and p(x|¬E) are
estimated on groups of subjects, but p(π) could be computed for every subject
separately. The original EBM uses longitudinal data but treats each observation
as a separate. Here, we fit our model using exclusively cross-sectional data, which
allows as to remove the possible effect of overfitting since observations from
the same subject are highly correlated. Though our proposition could be easily
implemented in any EBM extension, here we decided to use the original EBM,
which allows us to isolate the effect of using the connectivity prior.

2.2 Connectome Prior via Path Probability

We now introduce some additional notation. As before we denote by X =
{x1, . . . , xM} the set of biomarkers, in our case the gray matter thickness for
M cortical regions. By G we denote connectivity matrix with exactly M nodes:
{v1, . . . vM}. Each node vj uniquely corresponds to a biomarker xj . We use the
subscript i to denote different subjects, so Xi means subject i, xij means j-th
biomarker of i-th subject and the same for Gi and vij . By p(va → vb) we denote
the probability of transitioning from node va to node vb.

We define the probability of a specific path πa,b,c = {va → vb → vc} as a
product of probabilities of every individual step:

p(πa,b,c) := p(va → vb) · p(vb → vc). (4)

next, we define the individual transition probability to be proportional to the
shortest path between nodes:

p(va → vb) ∝ e−σ(va,vb), (5)

where σ(va, vb) denotes the shortest path between two nodes, thus transitioning
to closer nodes is more probable. We normalize an exponent in such a way that
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all probabilities of transitioning from node va to all other nodes sum to 1, thus
p(va → vb) 6= p(vb → va). Specifically, for every connectome, we compute square
(M ×M) matrix of shortest paths S:

Sa,b = σ(va, vb), (6)

next we apply an exponent as in equation (5), finally, we divide each element in
each row by the sum over this row to make individual values sum to 1:

p(va → vb) =
e−Sa,b

M∑
b=1

e−Sa,b

. (7)

The intuition of Network Diffusion Hypothesis is the following: if some region
becomes abnormal, it will affect other regions that are structurally closer (in
terms of connectivity) faster than regions that are structurally farther. And the
structural closeness of two nodes is the length of the shortest path between them.

2.3 Optimizing π

To find the optimal order of events π we need to optimize (3):

π∗ = arg max
π

p(π)p(X|π)

= arg max
π

p(π)

N∏
i

M∑
k=0

p(k|Xi, π) = arg max
π

N∏
i

p(π)1/N
M∑
k=0

p(k|Xi, π)

= arg max
π

N∑
i

log

[
p(π)1/N

M∑
k=0

p(k|Xi, π)

]

= arg max
π

1

N

N∑
i

log p(π) +

N∑
i

log

[
M∑
k=0

p(k|Xi, π)

]
, (8)

One could compute p(π) based on the average connectome ((̂G) = 1
N

∑N
i Gi).

However, we find that using
∑N
i log pi(π) instead of

∑N
i log p(π) leads to much

better results. In other words, every pi(π) is computed from the corresponding
individual connectome; for every subject, the prior on the order of events π is
different.

As the Bayesian formulation with the connectome prior is identical in form,
the optimization of (8) can be done using the MCMC procedure exactly as in
[8].

3 Experiments

3.1 Data

Our data consisted of 84 unique subjects from the ADNI 2 dataset: 32 Alzheimer’s
patients, including 8 women (mean age 76.8 ± 7.6) and 24 men (mean age
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Fig. 1. Agreement results. Agreement between stages and visit order was measured
using Kendall tau. Under the assumption that abnormality is irreversible, we measure
Kendall tau between the vector of subject visits order and vector of subject disease
progression scores. This figure summarizes the distribution of Kendall tau over all
subjects.

Fig. 2. Selected ADNI participants. Progression scores using order obtained with in-
dividual prior. Progression scores were computed using formula (1). Once we obtain
optimal order we compute progression score for every subject at each time point.

75.9±7.8) (AD), and 52 cognitively normal controls, including 26 women (mean
age 72.0 ± 4.9) and 26 men (mean age 73.6 ± 6.4)(NC). We used anatomical
MRI data from 3 visits for each NC subject, and 2 visits for AD subjects. Of
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the control subjects, 4 are known future converters to MCI. Regional gray mat-
ter thickness was obtained using FreeSurfer 5.3, based on the Dessikan-Killiany
atlas. We used only the baseline visit diffusion MRI to construct individual con-
nectomes. Briefly, we used FSLs eddie correction and ANTs SyN for EPI artifact
correction to T1 MRI. To extract streamlines, we used constrained spherical de-
convolution (CSD) with a probabilistic tractography algorithm, as implemented
in Dipy [16]. Finally, weighted connectivity matrices G have 0 on a main diago-
nal and the weights of edges are inversely proportional to the logarithm of the
number of streamlines:

Ga,b =

{
1

log(1+wa,b)
, if wa,b > 0

0, if wa,b = 0
(9)

where Ga,b is the edge between nodes a and b; wa,b is the number of stream-
lines between corresponding regions. The idea behind this specific weighting
scheme is the following: firstly, we need the edges to be inversely proportional
to number of streamlines (so the weight on edges has notion of distance not
similarity); secondly, we do not want to penalize weak connections too much, so
we take logarithm; finally, for streamlines with weight 1 we want an edge in a
resulting connectome, so we add 1.

3.2 Experimental pipeline

We compare three different versions of the EBM:

1. The original EBM [8].
2. EBM with connectivity prior obtained from average connectome.
3. EBM with individual connectivity priors.

All models were trained on a first time point (cross-sectional data) observation
and tested on latter time points (longitudinal data). Recall that evaluation of
subject stage using formula (1) does not require p(π), but only subject feature
vector Xi = {xi1, . . . , xiM} and optimal π∗. Positional uncertainty of the or-
ders was measured over multiple (200) MCMC runs. As additional performance
markers, we used ROC AUC in using the inferred disease stage to discriminate
AD and NC subjects.

4 Results

The natural way to measure agreement between the predicted stage of a disease
based on anatomical features and each subject’s actual visit order is with an
ordinal correlation. Kendall’s τ is the simplest choice, which we use here. We
display the distribution of τ over all subjects in figure 1. Mean τ for standard
EBM was 0.34, for mean connectome prior 0.41, and for individual connectome
prior 0.49. Predicted disease stage for the subjects, including the 4 converters,
is displayed in figure 2.
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Classification accuracy followed a similar progression, improving with the
mean connectome prior, and improving further with the individual prior (figure
3). Mean (standard deviation) ROC AUC over 200 independent MCMC opti-
mizations was 0.816 (0.008) for standard EBM, 0.83 (0.026) for EBM with mean
connectome prior, and 0.88 (0.046) for EBM with individual connectome prior.

Fig. 3. Binary classification results. Classification was done based on subject stage.
Performance was measured in terms of ROC AUC. Classification uncertainty was mea-
sured using 200 independent MCMC runs. All models were trained on cross-sectional
data and performance was measured on longitudinal data (excluding training observa-
tions).

Finally, in figures 4-6 we display the region by order probability matrix as
an indicator of the stability of the canonical order computation. Unsurprisingly,
using additional individual prior information makes the canonical order signif-
icantly less stable. This suggests that the overall EBM model with a single
canonical order may not be sufficient to capture true subject variability in the
way disease affects different brain regions over time.

Code reproducing all the results is published online. 4

5 Conclusion

We have presented a direct way to incorporate the Network Diffusion Hypothesis
into an established disease progression model. The extension via an informative
prior improves several aspects of biomarker performance, including classification

4 https://github.com/kurmukovai/ebm-connectivity-prior
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Fig. 4. Event order stability. Uncertainty is measured over multiple MCMC runs, rows
are sorted according to best order (using individual prior).

Fig. 5. Event order stability. Uncertainty is measured over multiple MCMC runs, rows
are sorted according to best order (no prior).

accuracy, and conversion prediction. Importantly, the work highlight the need to
develop more sophisticated models of disease progression that take into account
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Fig. 6. Event order stability. Uncertainty is measured over multiple MCMC runs, rows
are sorted according to best order (using average prior).

individual differences in brain connectivity and the resulting manner in which
the disease and specific symptoms are likely to progress. This may include up-
dating the longitudinal DPM models, for example by placing priors on sigmoidal
progression parameters, as well as entirely new formulations that replace the no-
tion of a canonical progression with a two-level stochastic process. Implications
of the improved progression modeling include better subject stratification for
clinical trials, lower drug development costs, and more accurate prediction of
future cognitive decline.
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